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Note 

Sedimentation focusing 
triangular cross-section 

STANISLAV WICAR 

field-flow fractionation in channels of 

Sedimentation focusing field-flow fractionation in channels with modulated 
cross-sectional permeability has been proposed by JarCa and J6hnova’. Later JanEa 
and Chemelik’ published some preliminary results obtained in a gravitational field. 

A limiting case of focusing based on Archimedes’ forces is focusing in 
a pseudo-discontinuous density field. Let us consider a channel of triangular 
cross-section containing three layers of liquids differing only slightly in their densities. 
The lower part of the channel is occupied by the most dense, the middle part by a less 
dense and the upper part by the least dense liquid. The density gradients necessary for 
focusing are concentrated in the diffusional zones around the interfaces separating 
homogenous liquids. If a binary mixture of particles differing merely in density is 
introduced at the channel inlet. then after relaxation both particle species are focused 
at the interfaces, provided that the particle densities match those of liquid layers. 

The initial particle distribution could be expressed in terms of spatial resolution, 
R,: 

- 
where J, and yn are the coordinates of the two interfaces and W is the effective 
thickness of the interface zone. As the thickness of each diffuse zone does not depend 
on the medium layer height. 11 - J’~, the initial spatial resolution could be generated 

over wide limits. 
During the subsequent field-flow fractionation process the spatial resolution, R,, 

is transformed into a time-based resolution, R,. The efficiency of this process, RJR,, is 
controlled by convective diffusion within both interface zones. To evaluate the 
efficiency, we have first to describe the hydrodynamics in a channel of triangular 
cross-section. 

Janea and Jahnoval modified Takahashi and Gill’s3 approximate solution of the 
Poisson equation for fully dcvcloped laminar flow in rectangular channels: 

u(.u,y) = (2) 
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by multiplying the right-hand side of cqn. 2 by the function 

(3) 

to satisfy the new boundary problem for a trapezoidal cross-section. In eqn. 2 APL is 
the pressure drop applied to the channel, 17 is fluid viscosity and h and IV are the channel 
dimensions. In expression 3 >‘ z and _v~ are the channel widths at both sides of the 
channel. 

Unfortunately, the resulting Z.&I:) function does not satisfy the basic Poisson 
equation 

,2 i?*u g+-_= -!A! 
‘3’ VL (4) 

To tind the solution of cqn. 4 for a channel of triangular cross-section, we may 
start with the construction of a function f(x,jt) that vanishes at the channel walls (Fig. 
1): 

f(XJ) = (J - ax) (J + ax) (5) 

where 

a = tan CI = cotan /I/2 = 
sin b 

1 -cos p 

d Y 

I X 

Fig. I Orientation of the channel in the rectangular coordinate system. 
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As the Laplacean of f(x,Y) equals a constant: 

$ + $ = -2(nZ - 1) 

we may use function 5 to form the solution of eqn. 4: 

u(.u,y) = 
AP 

(r.2 - n2x2) 
2f&(a2 - 1) . (6) 

Eqn. 6 expresses the velocity profiles in an open channel of triangular cross-section, 
provided that /I’ < 7c/2. For a closed channel, the profiles are modified merely at the 
upper wall. The important central part of the profiles in eqn. 6 for x = 0 is parabolic 
and does not display any local minimum as the equation of JanEa and Jahnova’ does. 

The convective diffusion could be characterized by an HETP equation: 

(7) 

where N* is the channel width. I<, according to Arls 4. is a dimensionless number, D is the 
diffusion coefficient of separated particles and u is the linear mean velocity. 

For the mean velocity of each interface layer we obtain from eqn. 6, provided 
that r. L ~~ A qz = 17, 

K 
U(y) = LIz I 4.2 

where K = AP/3vL is the normalized pressure drop across the channel. By inserting 
from eqn. 8 into eqn. 7, taking into account that M: = 2,11/u, 

H = 2%’ - 1) + 4KY4___- 
KY2 u2(u2 - 1)KD 

We may minimize H with respect to the normalized pressure drop K to obtain 

K, = 
sa(a” - l)D 

4’3 

where s = ,/K/2. Relating the minimum H to the first interface at YO, we have 

4Yo H - mo = 
a7 
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and 

or0 = (10) 

For HI and the time variance of the particle distribution at the second interface, x1, we 
obtain 

and 

The time-based resolution at the end of the channel is by definition 

R, = 
2L(l/Uo - l/Cl) 

4(610 + or1 1 

and after inserting from eqns. 8, 10 and 11 we obtain 

where 

JanEa and JAhnovri’ used a channel with fl = 2O and a = 57.3; the length of the 

channel was 30 cm. For _I’() = I cm, 4’1 = 2 cm, f( 1,2) = 3/16. Taking K according to 

Golay as 105, we have R, = 20.9. 
Estimating the effective thickness of the interface zones as 0.5 mm, the efficiency 

of the transformation process is approximately 1. Unfortunately, if the effective 
diffusion coefficient of separated particles is of the order of 1O-7 cm2is. the time for 
this separation is unrealistic: 

L Ll’o -=_= 7.2 . 10’ s = 200 h 
U(I zaD 
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By increasing the optimum normalized pressure drop by a factor of 100. we obtain for 
the time-based resolution 

(13) 

where 

and for the same channel we have R,, oo = 1.4 and the efficiency of the transformation 
is merely 0.1; the process requires about 2 h. 

It is evidently questionable whether field-flow fractionation is the best solution 
for the conversion of the spatial resolution to the time-based resolution in sedimenta- 
tion separations using gravitation. Apparently better results could be obtained if the 
sedimentation focusing process were accomplished in a burette-like vertical tube. 
Connecting the lower end of this tube directly to the detector, the direction of flow 
coincides with that of the gravitational force and, once obtained, the spatial resolution 
is converted to its time-based form directly with greater efficiency in a substantially 
shorter time. Such an arrangement, of course, could hardly be called field-flow 
fractionation. 
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